Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38743635

ABSTRACT

Background: Theileria spp. are responsible for ovine and caprine theileriosis, leading to significant morbidity and mortality in small ruminants. The present study aims to investigate Theileria spp. infections in small ruminants from Southern Punjab in Pakistan, and genetic characterize revealed Theileria spp. isolates. Methods: A total of 93 sheep and 107 goats were sampled between May and August 2022. Blood smears were examined microscopically, and PCR amplification targeting the 18S rRNA gene was performed to detect Theileria spp. Additionally, specific PCR assays targeting 18S rRNA and ms1 partial sequences were used to identify Theileria ovis and T. lestoquardi, respectively.  Results: The prevalence of Theileria spp. was significantly higher using PCR (13.5%) compared to microscopic screening (5%). Sheep showed a higher prevalence rate (19.4%) compared to goats (8.4%) (p = 0.024). Young sheep aged ≤ 1 year were more commonly infected with Theileria spp. (41%) compared to older sheep (p = 0.006). The prevalence of Theileria spp. was higher in sheep-only herds (37.3%) compared to goat-only herds (18%) or mixed-species herds (8.1%) (p = 0.015). The prevalence rates of T. ovis and T. lestoquardi were 9% and 2.5%, respectively, with four animals (2 goats and 2 sheep) showing co-infection. Phylogenetic analysis revealed that our T. ovis 18S rRNA sequence clustered with previously reported sequences from sheep in Turkey, China, Spain, and goats in Tanzania. The obtained T. lestoquardi ms1 partial sequence formed a distinct cluster from other T. lestoquardi isolates in Pakistan and neighboring countries.  Conclusion: Theileria spp. co-circulation in Pakistani small ruminants, particularly the presence of T. ovis and T. lestoquardi, highlights the need for attention from animal health decision-makers due to their financial and health impacts.

2.
Exp Appl Acarol ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491268

ABSTRACT

Ticks and tick-borne diseases have gained increasing attention in recent years due to their impact on public health and significant losses in livestock production. The use of synthetic compounds for tick control is becoming problematic, mainly due to the resistance to commercially available products as well as their toxicity. Therefore, new alternative control methods are required. For this purpose, plant-derived extracts may be considered as effective repellents and/or acaricides. The present literature review focuses on studies evaluating the acaricidal and repellent activity of plant-derived extracts and plant secondary metabolites. We also noted recent advances in protein-ligand-docking simulation to examine the possible toxic effect of natural chemical compounds on ticks. In conclusion, plant-derived repellents/acaricides can be effective against ticks, especially in rural areas and livestock farms.

3.
Microorganisms ; 12(3)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38543602

ABSTRACT

Rhipicephalus microplus is a persistent ectoparasite of cattle that causes bovine anaplasmosis and babesiosis, causing economic losses worldwide. Chemical treatment is the primary method for tick control, but the emergence of pesticide-resistant ticks is a major challenge. Alternative biocontrol strategies utilizing entomopathogenic microorganisms are being explored. This study aimed to validate the species identification and assess the efficacy of four strains of Staphylococcus bacteria (S. shinii S1 and S-2, S. succinus, and S. xylosus) previously reported as being entomopathogenic to R. microplus ticks. According to the bioassays, S. shinii S-1 exhibited the greatest degree of reproductive inhibition (47%), followed by S. succinus (44.3%) at a concentration of 1 × 108 cfu/mL. S. xylosus displayed decreased reproductive inhibition (6.3%). In an additional bioassay, S. shinii S-1 exhibited a significant larval mortality of 67.63%, followed by S. succinus with 66.75%, S. shinni S-2 with 64.61%, and S. xylosus with 28.18% mortality. The common signs of infection observed on these ticks included swelling, yellowish exudate on the hypostome, and reduced limb mobility and color change, except for S. succinus, which did not cause color changes. These bacteria were naturally found on bovine skin. However, further studies are needed to confirm their potential as promising alternatives or complementary agents to existing acaricidal compounds.

4.
Infect Genet Evol ; 118: 105569, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38354994

ABSTRACT

Ticks pose significant health risks to both wildlife and humans due to their role as vectors for various pathogens. In this study, we investigated tick infestation patterns, tick-associated pathogens, and genetic relationships within the tick species Amblyomma gervaisi, focusing on its prevalence in monitor lizards (Varanus bengalensis) across different districts in Pakistan. We examined 85 monitor lizards and identified an overall mean intensity of 19.59 ticks per infested lizard and an overall mean abundance of 11.98 ticks per examined lizard. All collected ticks (n = 1019) were morphologically identified as A. gervaisi, including 387 males, 258 females, 353 nymphs, and 21 larvae. The highest tick prevalence was observed in the Buner district, followed by Torghar and Shangla, with the lowest prevalence in Chitral. Lizard captures primarily occurred from May to October, correlating with the period of higher tick infestations. Molecular analysis was conducted on tick DNA, revealing genetic similarities among A. gervaisi ticks based on 16S rDNA and ITS2 sequences. Notably, we found the absence of A. gervaisi ITS2 sequences in the NCBI GenBank, highlighting a gap in existing genetic data. Moreover, our study identified the presence of pathogenic microorganisms, including Ehrlichia sp., Candidatus Ehrlichia dumleri, Anaplasma sp., Francisella sp., Rickettsia sp., and Coxiella sp., in these ticks. BLAST analysis revealed significant similarities between these pathogenic sequences and known strains, emphasizing the potential role of these ticks as vectors for zoonotic diseases. Phylogenetic analyses based on nuclear ITS2 and mitochondrial 16S rDNA genes illustrated the genetic relationships of A. gervaisi ticks from Pakistan with other Amblyomma species, providing insights into their evolutionary history. These findings contribute to our understanding of tick infestation patterns, and tick-borne pathogens in monitor lizards, which has implications for wildlife health, zoonotic disease transmission, and future conservation efforts. Further research in this area is crucial for a comprehensive assessment of the risks associated with tick-borne diseases in both wildlife and humans.


Subject(s)
Lizards , Rickettsia , Tick Infestations , Tick-Borne Diseases , Ticks , Animals , Humans , Male , Female , Ticks/microbiology , Rickettsia/genetics , Ehrlichia/genetics , Amblyomma/genetics , Tick Infestations/epidemiology , Tick Infestations/veterinary , Anaplasma/genetics , Phylogeny , Pakistan/epidemiology , Animals, Wild/genetics , Tick-Borne Diseases/epidemiology , Zoonoses , DNA, Ribosomal
5.
Parasite ; 31: 3, 2024.
Article in English | MEDLINE | ID: mdl-38315066

ABSTRACT

In this study, we aimed to develop a comprehensive methodology for identifying amino acid polymorphisms in acetylcholinesterase transcript 2 (AChE2) in acaricide-resistant Rhipicephalus microplus ticks. This included assessing AChE2 expression levels through qPCR and conducting 3D modeling to evaluate the interaction between acaricides and AChE2 using docking techniques. The study produced significant results, demonstrating that acaricide-resistant R. microplus ticks exhibit significantly higher levels of AChE expression than susceptible reference ticks. In terms of amino acid sequence, we identified 9 radical amino acid substitutions in AChE2 from acaricide-resistant ticks, when compared to the gene sequence of the susceptible reference strain. To further understand the implications of these substitutions, we utilized 3D acaricide-AChE2 docking modeling to examine the interaction between the acaricide and the AChE2 catalytic site. Our models suggest that these amino acid polymorphisms alter the configuration of the binding pocket, thereby contributing to differences in acaricide interactions and ultimately providing insights into the acaricide-resistance phenomenon in R. microplus.


Title: Relations entre la résistance aux acaricides et les polymorphismes du gène de l'acétylcholinestérase chez la tique du bétail Rhipicephalus microplus. Abstract: Notre étude vise à développer une méthodologie complète pour identifier les polymorphismes d'acides aminés dans le transcrit 2 de l'acétylcholinestérase (AChE2) chez les tiques Rhipicephalus microplus résistantes aux acaricides. Cela comprend l'évaluation des niveaux d'expression d'AChE2 via qPCR et la réalisation d'une modélisation 3D pour évaluer l'interaction entre les acaricides et l'AChE2 à l'aide de techniques d'amarrage moléculaire. L'étude a produit des résultats significatifs, démontrant que les tiques R. microplus résistantes aux acaricides présentent des niveaux d'expression d'AChE significativement plus élevés que les tiques sensibles de référence. En termes de séquence d'acides aminés, nous avons identifié 9 substitutions d'acides aminés dans AChE2 provenant de tiques résistantes aux acaricides par rapport à la séquence génétique de la souche sensible de référence. Pour mieux comprendre les implications de ces substitutions, nous avons utilisé la modélisation de l'amarrage acaricide-AChE2 pour examiner l'interaction entre l'acaricide et le site catalytique AChE2. Nos modèles suggèrent que ces polymorphismes d'acides aminés modifient la configuration de la poche de liaison, contribuant ainsi aux différences dans les interactions acaricides et fournissant finalement un aperçu du phénomène de résistance aux acaricides chez R. microplus.


Subject(s)
Acaricides , Cattle Diseases , Rhipicephalus , Tick Infestations , Animals , Cattle , Acaricides/pharmacology , Acetylcholinesterase/genetics , Acetylcholinesterase/metabolism , Rhipicephalus/genetics , Rhipicephalus/metabolism , Drug Resistance/genetics , Polymorphism, Genetic , Amino Acids/genetics , Tick Infestations/veterinary
6.
Microorganisms ; 11(10)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37894088

ABSTRACT

Anaplasma (A.) ovis is the most important cause of anaplasmosis in small ruminants. The current study was planned to estimate the molecular prevalence, risk factors, and phylogenetic analysis of A. ovis infection in sheep and goats from different agro-climatic regions of Central and Southern Punjab, Pakistan. A total of 400 jugular blood samples were collected from asymptomatic goats (n = 200) and sheep (n = 200) from the Jhang and Dera Ghazi Khan districts from January 2021 to February, 2023. Two hundred blood samples were collected from each district. Ten union councils (UC) were randomly chosen from each district, and 20 samples were collected from each UC based on the multistage cluster sampling technique. The samples were analyzed with PCR targeting the major surface protein (msp4) gene of A. ovis. The overall molecular prevalence of anaplasmosis was 57.5%. The disease occurrence was higher in Dera Ghazi Khan (61.5%) than in the Jhang district (53.5%). Infection positivity was greater in goats (65.5%) than in sheep (49.5%). Multivariate logistic regression analysis indicated that host species [sheep; Odds Ratio (OR) = 3.212; p = 0.000, Confidence Interval (CI) = 1.968-5.242], age (adult; OR = 2.606; p = 0.003, CI = 1.398-4.858), and acaricide use (never; OR = 13.671; p = 0.000, CI = 6.414-26.283) were significantly higher risk for A. ovis in small ruminants (p< 0.05; OR > 1). The sequencing and phylogenetic analysis of four representative isolates in the current study (Genbank numbers; Goats: OQ302202, OQ302203; Sheep: OQ319592, OQ319593) revealed novel strains of A. ovis with 97-100% similarity from different countries. The msp4-based goat isolates showed greater genetic diversity, while sheep genotypes showed homology with isolates from Italy, Spain, Hungary, Cyprus, Spain, Iran, and China. The current surveillance study will help in devising prevention and control strategies regarding anaplasmosis in small ruminants. However, there is a need for further study on the clinicopathological and vector competence aspects of these genotypes.

7.
Pathogens ; 12(10)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37887771

ABSTRACT

The expression of the Fasciola hepatica carboxylesterase type B (CestB) gene is known to be induced upon exposure to the anthelmintic triclabendazole (TCBZ), leading to a substantial rise in enzyme-specific activity. Furthermore, the nucleotide sequence of the CestB gene displays variations that can potentially result in radical amino acid substitutions at the ligand binding site. These substitutions hold the potential to impact both the ligand-protein interaction and the catalytic properties of the enzyme. Thus, the objective of our study was to identify novel CestB polymorphisms in TCBZ-resistant parasites and field isolates obtained from a highly endemic region in Central Mexico. Additionally, we aimed to assess these amino acid polymorphisms using 3D modeling against the metabolically oxidized form of the anthelmintic TCBZSOX. Our goal was to observe the formation of TCBZSOX-specific binding pockets that might provide insights into the role of CestB in the mechanism of anthelmintic resistance. We identified polymorphisms in TCBZ-resistant parasites that exhibited three radical amino acid substitutions at positions 147, 215, and 263. These substitutions resulted in the formation of a TCBZSOX-affinity pocket with the potential to bind the anthelmintic drug. Furthermore, our 3D modeling analysis revealed that these amino acid substitutions also influenced the configuration of the CestB catalytic site, leading to alterations in the enzyme's interaction with chromogenic carboxylic ester substrates and potentially affecting its catalytic properties. However, it is important to note that the TCBZSOX-binding pocket, while significant for drug binding, was located separate from the enzyme's catalytic site, rendering enzymatic hydrolysis of TCBZSOX impossible. Nonetheless, the observed increased affinity for the anthelmintic may provide an explanation for a drug sequestration type of anthelmintic resistance. These findings lay the groundwork for the future development of a molecular diagnostic tool to identify anthelmintic resistance in F. hepatica.

8.
Life (Basel) ; 13(10)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37895422

ABSTRACT

Sarcoptes scabiei is an ectoparasite of humans and animals that causes scabies. The Rhipicephalus (Boophilus) microplus is a blood-sucking ectoparasite that transmits various pathogens. These two parasites have caused great losses to a country's dairy and agriculture sectors. The aim of this study was to determine the in vitro and in silico efficacy of Camellia sinensis plant extracts. Different concentrations of C. sinensis ethanolic plant extracts were prepared using the maceration method and were used against mites and ticks (in adult immersion test AIT and larval packet test LPT) to evaluate their in vitro acaricidal activity. Additionally, in silico molecular docking was performed to investigate the inhibitory interactions between the phytochemicals of the plant and S. scabiei and R. microplus glutathione transferase proteins (SsGST and RmGST). This study observed that the plant extract showed high efficacy in vitro against mites and different tick stages in adult immersion and larval packet tests. Additionally, the in silico study revealed a strong binding interaction between ellagic acid and SsGST protein, with a binding energy of -7.3 kcal/mol, with respect to permethrin (-6.7 kcal/mol), whereas quercetin and RmGST resulted in a docking score of -8.6 kcal/mol compared to deltamethrin (-8.2 kcal/mol). Overall, this study explored the potential of C. sinensis as a natural alternative for controlling tick and mite infestations and provided insights into the inhibitory mechanisms of its phytochemicals.

9.
Microorganisms ; 11(9)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37764138

ABSTRACT

The search for targets to control ticks and tick-borne diseases has been an ongoing problem, and so far, we still need efficient, non-chemical alternatives for this purpose. This search must consider new alternatives. For example genomics analysis is a widely applied tool in veterinary health studies to control pathogens. On the other hand, we propose that regulation of endocrine mechanisms represents a feasible alternative to biologically controlling tick infestations. Thus, we performed the molecular identification of an estrogen-related receptor gene of Rhipicephalus microplus called RmERR by RT-PCR in tick ovaries, embryonic cells, and hemolymph, which allowed us to analyze its expression and propose potential functions in endocrine mechanisms and developmental stages. In addition, we performed an in silico characterization to explore the molecular interactions of RmERR with different estrogens, estrogenic antagonists, and endocrine disruptor Bisphenol A (BPA), finding potential interactions predicted by docking analysis and supported by negative values of ΔG (which suggests the potential interaction of RmERR with the molecules evaluated). Additionally, phylogenetic reconstruction revealed that RmERR is grouped with other tick species but is phylogenetically distant from host vertebrates' ERRs. In summary, this study allowed for the identification of an ERR in cattle tick R. microplus for the first time and suggested its interaction with different estrogens, supporting the idea of a probable transregulation process in ticks. The elucidation of this interaction and its mechanisms unveiled its potential as a target to develop tick control strategies.

10.
Microorganisms ; 11(8)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37630667

ABSTRACT

Aspergillus flavus has been found to be an effective entomopathogenic fungus for various arthropods, including ticks. In particular, natural fungal infections in cattle ticks show promise for biocontrol of the Rhipicephalus (Boophilus) microplus tick, which is a major ectoparasite affecting cattle worldwide. Our study aimed to elucidate the specific entomopathogenic virulence factors encoded in the genome of an A. flavus strain isolated from naturally infected cattle ticks. We performed morphological and biochemical phenotyping alongside complete genome sequencing, which revealed that the isolated fungus was A. flavus related to the L morphotype, capable of producing a range of gene-coded entomopathogenic virulence factors, including ribotoxin, aflatoxin, kojic acid, chitinases, killer toxin, and satratoxin. To evaluate the efficacy of this A. flavus strain against ticks, we conducted experimental bioassays using healthy engorged female ticks. A morbidity rate of 90% was observed, starting at a concentration of 105 conidia/mL. At a concentration of 107 conidia/mL, we observed a 50% mortality rate and a 21.5% inhibition of oviposition. The highest levels of hatch inhibition (30.8%) and estimated reproduction inhibition (34.64%) were achieved at a concentration of 108 conidia/mL. Furthermore, the tick larval progeny that hatched from the infected tick egg masses showed evident symptoms of Aspergillus infection after incubation.

11.
Data Brief ; 48: 109053, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37006402

ABSTRACT

As the most important bovine ectoparasite, the southern cattle tick Rhipicephalus microplus transmits lethal cattle diseases such as babesiosis and anaplasmosis, costing the global livestock industry billions of dollars annually. To control cattle ticks, preventive treatment of cattle with pesticides is a common practice; however, after decades of chemical treatment, pesticide resistance has arisen in cattle ticks, rendering most formulations ineffective over time. Facing the perspective of running out of effective chemical treatments against R. microplus, research on biocontrol alternatives is necessary. Acaro-pathogenic microorganisms isolated from different developmental stages of R. microplus offer potential as biocontrol agents. Aspergillus flavus strain INIFAP-2021, isolated from naturally infected cattle ticks, produced high levels of mobility and mortality in the tick population during experimental infections. The whole genome of the fungi was sequenced using the DNBSEQ platform by BGI. The genome was assembled using SOAPaligner, and A. flavus NRRL3357 was used as the reference genome; the complete genome contained eight pairs of chromosomes and 36.9 Mb with a GC content of 48.03%, exhibiting 11482 protein-coding genes. The final genome assembly was deposited at GenBank as a bio project under accession number PRJNA758689, and supplementary material is accessible through Mendeley DOI: 10.17632/mt8yxch6mz.1.

12.
Animals (Basel) ; 13(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37106951

ABSTRACT

Pinus roxburghii, also known by the name "Himalayan chir pine," belongs to the Pinaceae family. Rhipicephalus (Boophilus) microplus tick is one of the most significant bovine ectoparasites, making it a major vector of economically important tick-borne diseases. The researchers conducted adult immersion tests (AIT) and larval packet tests (LPT) to investigate the acaricidal effect of P. roxburghii plant extract on R. (B.) microplus and its potential modulatory function when used with cypermethrin. Eggs were also assessed for their weight, egg-laying index (IE), hatchability rate, and control rate. After exposure to essential extract concentrations ranging from 2.5 to 40 mg/mL for 48 h, adult female ticks' oviposition inhibition and unfed R. (B.) microplus larvae's mortality rates were analyzed. Engorged females exposed to P. roxburghii at 40 mg/mL had reduced biological activity (oviposition, IE) compared to positive and negative controls. A concentration of 40 mg/mL of P. roxburghii caused 90% mortality in R. (B.) microplus larvae, whereas cypermethrin (the positive control) caused 98.3% mortality in LPT. In AIT, cypermethrin inhibited 81% of oviposition, compared to the 40 mg/mL concentration of P. roxburghii, which inhibited 40% of the ticks' oviposition. Moreover, this study assessed the binding capacity of selected phytocompounds with the targeted protein. Three servers (SWISS-MODEL, RoseTTAFold, and TrRosetta) recreated the target protein RmGABACl's 3D structure. The modeled 3D structure was validated using the online servers PROCHECK, ERRAT, and Prosa. Molecular docking using Auto Dock VINA predicted the binding mechanisms of 20 drug-like compounds against the target protein. Catechin and myricetin showed significant interactions with active site residues of the target protein, with docking scores of -7.7 kcal/mol and -7.6 kcal/mol, respectively. In conclusion, this study demonstrated the acaricidal activity of P. roxburghii extract, suggesting its potential as an alternative natural acaricide for controlling R. (B.) microplus.

13.
Genes (Basel) ; 13(10)2022 10 19.
Article in English | MEDLINE | ID: mdl-36292784

ABSTRACT

Fasciola hepatica anthelmintic resistance may be associated with the catalytic activity of xenobiotic metabolizing enzymes. The gene expression of one of these enzymes, identified as carboxylesterase B (CestB), was previously described as inducible in adult parasites under anthelmintic treatment and exhibited a single nucleotide polymorphism at position 643 that translates into a radical amino acid substitution at position 215 from Glutamic acid to Lysine. Alphafold 3D models of both allelic sequences exhibited a significant affinity pocket rearrangement and different ligand-docking modeling results. Further bioinformatics analysis confirmed that the radical amino acid substitution is located at the ligand affinity site of the enzyme, affecting its affinity to serine hydrolase inhibitors and preferences for ester ligands. A field genotyping survey from parasite samples obtained from two developmental stages isolated from different host species from Argentina and Mexico exhibited a 37% allele distribution for 215E and a 29% allele distribution for 215K as well as a 34% E/K heterozygous distribution. No linkage to host species or geographic origin was found in any of the allele variants.


Subject(s)
Anthelmintics , Fasciola hepatica , Animals , Fasciola hepatica/genetics , Fasciola hepatica/metabolism , Carboxylesterase/genetics , Carboxylesterase/metabolism , Amino Acid Substitution , Ligands , Polymorphism, Single Nucleotide/genetics , Lysine , Glutamic Acid/genetics , Xenobiotics , Anthelmintics/pharmacology , Binding Sites , Esters , Serine
14.
J King Saud Univ Sci ; 34(6): 102136, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35756195

ABSTRACT

Phytochemicals are directly involved in therapeutic treatment or precursors to synthesize useful drugs. The current study was aimed to evaluate the phytocompounds and their biopotentials using methanolic and n-hexane extracts of various parts of Oxalis pes-caprae. For the phytochemical analysis, standard procedures were used, whereas Aluminum Chloride reagent and Follin-ciocalteau reagent methods were used to determine total flavonoid and phenolic contents. Radical scavenging DPPH, phosphomolybdenum reduction, and reducing power assays were used to assess antioxidative potentials. Antibacterial potential was determined by applying disc diffusion method while cytotoxicity was determined employing brine shrimp assay. FT-IR (Fourier-transform infrared) analysis was utilized to gather spectral information, while molecular docking tools were employed to look at how O. pes-caprae plant-based ligands interact with the target protein COVID-19 3CLPro (PDB:6LU7). Phenols, flavonoids, alkaloids and saponins were tested positive in preliminary phytochemical studies. TPC and TFC in different extracts ranging from (38.55 ± 1.72) to (65.68 ± 0.88) mg/g GAE/g and (24.75 ± 1.80) to (14.83 ± 0.92) mg/g QUE/g were used respectively. IC50 value (24.75 ± 0.76 g/mL) by OXFH, total antioxidant capacity (55.89 ± 1.75) mg/g by OXLM, reducing potential (34.98 ± 1.089) mg/g by OXSM, maximum zone of inhibition against B. subtilis (24 ± 0.65 mm) by OXLM and maximum cytotoxicity 96% with LD50 19.66 (µg/mL) by OXSM were the best calculated values among all extracts. Using molecular docking, it was found that Caeruleanone A, 2',4'-Dihydroxy-2″-(1-hydroxy-1-methylethyl) dihydrofuro [2,3-h] flavanone and Vadimezan demonstrated best affinity with the investigated SARS CoV-2 Mpro protein. This work provide justification about this plant as a source of effective phytochemicals and their potential against microbes could lead to development of biosafe drugs for the welfare of human being. In future, different in vitro and in vivo biological studies can be performed to further investigate its biomedical potentials.

15.
Saudi J Biol Sci ; 29(4): 2014-2025, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35531246

ABSTRACT

Livestock industry is an essential part of Pakistan's economy, and a variety of ruminants (including sheep and goats) are reared for the increasing demand of milk, meat and hide products. Haemoparasitic illnesses such as theileriosis, anaplasmosis, and babesiosis are a significant health risk for small ruminants in our country. Information regarding distribution patterns, the tick species involved and effective strategies to control tick-borne diseases (TBD) in goats and sheep of Pakistan is limited. To this end, it is required to assess the present rank of TBDs in small ruminants of Pakistan with a note on their vector ticks in order to control and identify the gaps in the knowledge of TBDs. This will recommend areas for future research and will add to the understanding of these diseases and will draw attention to the need for better-quality tools for the diagnosis and control of TBDs in small ruminants of Pakistan.

16.
Saudi J Biol Sci ; 29(3): 1355-1366, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35280548

ABSTRACT

Despite advancement in modern medicines, plant derived medicines have still wide range utilities as they have less side effects and are cheap and biocompitable. Sassurea lappa is an extensively used plant in traditional medicinal formulations. Plant roots are used to cure various diseases including cancer, rheumatic pain, abdominal and nervous disorders. The present study was aimed for the evalution of biological potentials of methanolic and chloroform extracts of Saussurea lappa root, leaf, seed and flower. The methanolic and chloroform extracts were subjected to qualitative and quantitative phytochemical analyses. Identification of functional groups was performed using Fourier Transform infrared (FT-IR) spectroscopy. Antioxidant potential was determined via diphenyl-1-picrylhydrazyl (DPPH), total reducing power (TRP) and total antioxidant capacity (TAC) method, anti-hemolytic potential was conducted on human RBCs, antibacterial activity was evaluated against six American type culture collection (ATCC) and three multi drug resistance (MDR) strains, cytotoxic and phytotoxic potentials were evaluated through brine shrimp lethality assay and raddish seed assay respectively. Experiments were performed in triplicates and analysis of variance (ANOVA) was applied using statistics version-8.1. Phytochemical analysis revealed the presence of sixteen secondary metabolites. Fourteen functional groups were identified through FTIR. S. lappa root methanolic (SLRM) showed maximum antioxidant activity index (AAI-79.42%) whereas chloroform extract of leaves (SLLC) gave highest antibacterial activity with maximum zone of inhibition (ZOI) against Pseudomonas aeruginosa (21.4 mm). Maximum cytotoxicity was observed for SLRM with lethal dose concentration (LC50) of 58.8 µg/mL. However, root extracts showed significant phytotoxicity (15% germination). The current study investigated that bioactive compounds present in S. lappa leaves, seed, flower and roots were responsible for enhanced biological potentials. Further studies on isolation and characterization of these bioactive compounds may help in drug development. In future, we recommend different in-vitro and in-vivo studies to further confirm it biopharmacological potencies.

17.
Genes (Basel) ; 14(1)2022 12 31.
Article in English | MEDLINE | ID: mdl-36672859

ABSTRACT

Rhipicephalus microplus is a major bovine ectoparasite that negatively impacts the cattle industry. The acaricidal activity of Datura innoxia ethanolic plant extract against R. microplus, compared with trichlorfon, was examined using the adult immersion test (AIT), and larval packet test (LPT). In vitro acaricidal activity of the selected plant extract against R. microplus engorged females was evaluated at different concentrations (2.5, 5, 10, 20, and 40 mg/mL), and was the same for AIT and LPT. It was further supported by in silico molecular docking of D. innoxia's 21 phytochemicals against the R. microplus Glutathione S-transferases (RmGST) protein's three-dimensional (3D) structure predicted by the trRosetta server. The modeled 3D structure was then evaluated and confirmed with PROCHECK, ERRAT, and Verify3D online servers. To predict the binding mechanisms of these compounds, molecular docking was performed using Auto dock Vina software, and molecular dynamic (MD) simulations were used to investigate the protein atom's dynamic motion. D. innoxia has a relatively higher inhibitory effect on oviposition (from 9.81% to 45.37%) and total larval mortality (42.33% at 24 h and 93.67% at 48 h) at 40 mg/mL. Moreover, the docking results showed that the chemicals norapoatropine and 7-Hydroxyhyoscyamine have strong interactions with active site residues of the target protein, with a docking score of -7.3 and -7.0 Kcal/mol, respectively. The current work also provided a computational basis for the inhibitors of Glutathione S-transferases that were studied in this research work, and this new knowledge should aid in creating new and effective acaricidal chemicals. Furthermore, this plant extract's acaricide activity and its effect on oviposition and larval mortality were established in this work for the first time, indicating the possible use of this extract in the management of ticks.


Subject(s)
Acaricides , Coleoptera , Datura , Rhipicephalus , Female , Animals , Cattle , Acaricides/pharmacology , Molecular Docking Simulation , Larva , Plant Extracts/pharmacology , Plant Extracts/chemistry , Glutathione Transferase , Transferases , Glutathione
18.
Pathogens ; 10(11)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34832612

ABSTRACT

Bioinformatics analysis of the complete transcriptome of Fasciola hepatica, identified a total of ten putative carboxylesterase transcripts, including a 3146 bp mRNA transcript coding a 2205 bp open reading frame that translates into a protein of 735 amino acids, resulting in a predicted protein mass of 83.5 kDa and a putative carboxylesterase B enzyme. The gene coding for this enzyme was found in two reported F. hepatica complete genomes stretching 23,230 bp, containing two exons of 1282 and 1864 bp, respectively, as well as a 20,084 bp intron between the exons. The enzymatic activity was experimentally assayed on F. hepatica protein extracts by SDS-PAGE zymograms using synthetic chromogenic substrates, confirming both the theoretical molecular weight and carboxylesterase enzymatic activity. Further bioinformatics predicted that this enzyme is an integral component of the cellular membrane that should be active as a 167 kDa homodimer complex and polyacrylamide gel electrophoresis (PAGE) zymograms experiments confirmed the analysis. Additional bioinformatics analysis showed that DNA sequences that code for this particular enzyme are highly conserved in other parasitic trematodes, although they are labeled hypothetical proteins.

19.
Pathogens ; 10(11)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34832666

ABSTRACT

Ticks are hematophagous ectoparasites that infest a diverse number of vertebrate hosts. The tick immunobiology plays a significant role in establishing and transmitting many pathogens to their hosts. To control tick infestations, the acaricide application is a commonly used method with severe environmental consequences and the selection of tick-resistant populations. With these drawbacks, new tick control methods need to be developed, and the immune system of ticks contains a plethora of potential candidates for vaccine design. Additionally, tick immunity is based on an orchestrated action of humoral and cellular immune responses. Therefore, the actors of these responses are the object of our study in this review since they are new targets in anti-tick vaccine design. We present their role in the immune response that positions them as feasible targets that can be blocked, inhibited, interfered with, and overexpressed, and then elucidate a new method to control tick infestations through the development of vaccines. We also propose Extracellular Traps Formation (ETosis) in ticks as a process to eliminate their natural enemies and those pathogens they transmit (vectorial capacity), which results attractive since they are a source of acting molecules with potential use as vaccines.

20.
Data Brief ; 35: 106808, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33659584

ABSTRACT

Fasciola hepatica is a worldwide distributed zoonotic parasitic trematode, which causes a severe liver disease clinically known as fasciolasis in a large number of wild animals, several livestock species as well as humans, prevention and control of fasciolasis is made by massive use of anthelmintic compounds on livestock and inevitably this practice has led to the emergence of anthelmintic resistant Fasciola hepatica and there is a great scientific effort to elucidate the molecular basis of anthelmintic resistance of parasitic helminths in general and of Fasciola hepatica in particular that may lead to improved anthelmintic compounds. In our project, we sequenced the transcriptomes obtained from the anthelmintic response to Triclabendazole and Albendazole on four samples from sensitive and resistant strains of Fasciola hepatica on Illumina HiSeq 4000 Platform and generated about 10.03 Gb per sample. The average genome-mapping rate is 81.29% and the average gene-mapping rate is 62.81%. 30,105 genes were identified in which 28,669 of them are known genes and 1,237 of them are novel genes from novel coding transcripts without any known features, 20,743 novel RNA transcripts were identified of which 14,293 of them are previously unknown splicing event for known genes but no alternative splicing was detected, the remaining 5,213 transcripts were found to be long noncoding RNA.

SELECTION OF CITATIONS
SEARCH DETAIL
...